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Abstract: This paper explores the application and advantages of remote sensing, machine learn-
ing, and mid-infrared spectroscopy (MIR) as a popular proximal sensing spectroscopy tool in the
estimation of soil organic carbon (SOC). It underscores the practical implications and benefits of
the integrated approach combining machine learning, remote sensing, and proximal sensing for
SOC estimation and prediction across a range of applications, including comprehensive soil health
mapping and carbon credit assessment. These advanced technologies offer a promising pathway,
reducing costs and resource utilization while improving the precision of SOC estimation. We con-
ducted a comparative analysis between MIR-predicted SOC values and laboratory-measured SOC
values using 36 soil samples. The results demonstrate a strong fit (R2 = 0.83), underscoring the
potential of this integrated approach. While acknowledging that our analysis is based on a limited
sample size, these initial findings offer promise and serve as a foundation for future research. We
will be providing updates when we obtain more data. Furthermore, this paper explores the potential
for commercialising these technologies in Australia, with the aim of helping farmers harness the
advantages of carbon markets. Based on our study’s findings, coupled with insights from the existing
literature, we suggest that adopting this integrated SOC measurement approach could significantly
benefit local economies, enhance farmers’ ability to monitor changes in soil health, and promote
sustainable agricultural practices. These outcomes align with global climate change mitigation efforts.
Furthermore, our study’s approach, supported by other research, offers a potential template for
regions worldwide seeking similar solutions.

Keywords: carbon cycle; sustainable farming; low-cost estimation; model; commercialization

1. Introduction

Soil organic carbon (SOC) is a key component of the global carbon cycle [1–3] and
stores more carbon than the atmosphere and biosphere combined [4]. Soil organic carbon
(SOC) is not only composed of plant residues and animal wastes, but also includes organic
matter that has been transformed by a diverse array of soil microorganisms, such as fungi
and bacteria. While cyanobacteria are an exception, most of these organisms primarily
utilise carbon derived from plants. They play a vital role in the soil ecosystem, contributing
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their living biomass and the products of decomposition to the SOC pool, thereby facilitating
the recycling and modification of plant-originated carbon [5–9]. The global carbon balance is
significantly affected by even small changes in SOC [3]. SOC profoundly affects the physical,
chemical, and biological properties of the soil [7] and therefore has a direct contribution
to agricultural productivity and soil fertility [8]. For example, increasing concentrations
of SOC enhance the soil’s water-holding capacity and promote the formation of a stable
soil structure. Furthermore, the decomposition of SOC by soil microorganisms releases
essential nutrients, which are then available for plant uptake. SOC also serves as a vital
food source for these soil micro-organisms [9].

Despite widespread recognition of the importance of SOC, challenges remain in mea-
suring and monitoring its concentration in soil [10,11]. Traditional methods of measuring
SOC, such as wet chemical analysis and dry combustion [12,13], require extensive labo-
ratory analysis of numerous soil samples, which is resource-intensive [14]. In addition,
a limitation of the traditional approach is its inability to assess and monitor changes in
SOC concentrations over spatio-temporal scales [15]. With advances in remote sensing
technique and machine learning, researchers have begun to explore integrated methods
of SOC measurement [16–20]. These new methods of SOC estimation facilitate the de-
velopment of spatial strata, thereby reducing the number of sampling profiles needed to
produce high-resolution SOC maps, leading to effectively reducing the cost of measuring
SOC [16,21]. Additionally, researchers have used Mid-infrared spectroscopy (MIR) as a
popular proximal sensing tool for SOC prediction [22,23], thus integrating the MIR with
remote sensing and machine learning to provide incentives for resource efficiency.

The integration of techniques aims to overcome the limitations of traditional methods
and provide cost-effective, accurate, and scalable solutions for SOC measurement [24,25].
Remote sensing allows for the collection of large-scale, spatially explicit data on soil prop-
erties, including SOC, by utilizing various sensors mounted on satellites or aircraft [20,25].
Machine learning algorithms, such as random forests and support vector machines, ef-
fectively analyze and interpret, enabling the prediction and mapping of SOC with high
precision [26]. MIR spectra provide valuable information about the physical structure and
chemical composition of soils, including SOC [27,28]. By analyzing MIR spectra collected
from soil samples profiles, machine learning models can be trained to accurately predict
SOC, eliminating the need for costly and time-consuming laboratory analysis [29]. These
approaches not only reduces the cost of SOC measurement but also allows for rapid and
non-destructive assessment of SOC in large areas [30].

To address the current limitations in accurately measuring SOC within Australian
soils, we propose an innovative approach that combines remote sensing, machine learning,
and MIR spectroscopy [16,23,27]. This integration aims to refine SOC estimation methods,
achieving higher resolution (10 m × 10 m) SOC maps at a reduced cost of AUD 3/ha/yr. The
current carbon project in Australia will validate these two complimentary SOC estimation
methods not yet fully validated for Australian conditions.

In summary, this report aimed to shed light on the integration of remote sensing, ma-
chine learning, and MIR in SOC measurement. By addressing the limitations of traditional
methods, these technologies offer resource efficient and scalable solutions for assessing
and monitoring SOC across the spatio-temporal scale. The potential for the commercial
application in Australia, combined with its benefits leading to sustainable farming and
climate change mitigation, make the approach a promising avenue for future research and
implementation. Embracing these novel approaches allows for a better understanding and
management of SOC, contributing to sustainable agriculture and aligning with Sustainable
Development Goals (SDGs).
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2. Application of Remote Sensing and Machine Learning in Soil Organic
Carbon Measurement
2.1. Remote Sensing and Soil Organic Carbon

Remote sensing and machine learning have emerged as important tools in modern en-
vironmental sciences and have shown great promise in the field of SOC measurement [20].
Remote sensing presents the advantage of collecting information for a wider spatial cov-
erage and frequent temporal repeatability [31]. Various satellites such as the Landsat
program [32,33], the Sentinel series [34,35] and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) offer a wide range of spectral data that are being used for SOC
estimation [19,36]. Spectral indices derived from these remote sensing data, such as the
Normalised Difference Vegetation Index (NDVI) and the Soil-Adjusted Vegetation Index
(SAVI), have been found to correlate with SOC concentration [20,37], as vegetation cover
is often directly related to the SOC concentration [38]. Thus, these indices provide a very
useful clue for predicting SOC concentrations in soils. In addition, multispectral and hy-
perspectral imaging has the ability to capture soil reflectance information that can be used
to predict SOC [39]. These techniques not only provide data with high spatial resolution,
but also provide more detailed information for the estimation of SOC concentrations. In
summary, remote sensing techniques provide powerful tools for SOC concentration es-
timation through their broad spatial coverage and temporal repeatability, as well as the
availability of multiple spectral data. These tools, such as NDVI, SAVI, and multispectral
and hyperspectral imaging, not only contribute to the understanding of the distribution and
variability of SOC in soil, but also have potentially important applications in sustainable
land management and environmental protection.

Remote sensing can provide valuable insights into SOC concentrations, but the ac-
curacy of predictions depends on several factors, including the specific remote sensing
technology, spatial resolution, and the use of robust machine learning models [17,40].
Ground validation is crucial to ensure the reliability of SOC estimates obtained through
remote sensing. SOC concentration affects the spectral properties of the soil, and spectral
reflectance from certain wavelengths of light can be correlated with SOC concentration.
The variances among machine learning models also contribute to the discrimination of SOC
values [41]. Machine learning algorithms, including regression models and deep learning
models, can be trained on spectral data along with ground-truth SOC measurements. These
models can then predict SOC concentrations across large areas based on the spectral infor-
mation. The spatial resolution of remote sensing data is crucial. Higher-resolution data can
provide more accurate predictions of SOC concentrations at a finer scale [42]. For example,
data with a spatial resolution of 10 m × 10 m can provide more detailed information
compared to coarser-resolution data [43]. However, there is the detection limit (MDL) in
remote sensing [44]. The MDL varies depending on the specific sensor and spectral bands
used. It is essential to understand the MDL of the remote sensing system being employed to
assess its suitability for a given application. To ensure the reliability of SOC predictions, it
is essential to validate remote sensing-derived estimates with ground-based measurements
of SOC [45]. This involves collecting soil samples from various locations and measuring
SOC concentrations using laboratory methods. The remote sensing estimates can then be
compared to these ground-truth measurements to assess accuracy. Remote sensing data
can capture changes in SOC concentrations over time. Repeated data acquisition allows
for monitoring changes in SOC due to factors such as land use, climate, and management
practices [46,47].

2.2. Machine Learning in Soil Organic Carbon Measurement

Machine learning techniques have revolutionised interpretation and analysis of large
data sets [48]. In the context of SOC estimation, machine learning algorithms such as
Random Forests [49–51], Support Vector Machines [51] and Artificial Neural Networks [52]
have been used extensively. These algorithms can model complex and non-linear rela-
tionships between remotely sensed spectral data and SOC [51]. Recently, more advanced
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machine learning techniques such as deep learning have also been applied [16]. Convo-
lutional Neural Networks (CNNs), a type of deep learning model, have demonstrated
their ability to handle high-dimensional spectral data with increased precision of SOC
prediction [53].

2.3. Integration of Remote Sensing and Machine Learning

The synergy between remote sensing and machine learning leverages the distinct
strengths of each technique [17]. Remote sensing provides a wide-reaching, high-resolution
view of the Earth’s surface, capturing valuable spectral data. Meanwhile, machine learning
algorithms excel at processing vast datasets and extracting intricate patterns and insights.
When combined, remote sensing data enriches machine learning models with comprehen-
sive environmental information, enabling precise analysis and prediction [17]. The multiple,
spatially extensive spectral data from remote sensing serve as input to the machine learning
models, leading to model the complex relationships for SOC estimations [24]. This ap-
proach can reduce the cost of measuring SOC by reducing the number of sampling profiles
required for estimation of SOC, therefore providing a more cost-effective and scalable
solution for large-scale SOC mapping [17,18,51,54].

2.4. Limitation of Remote Sensing and Machine Learning Model

Remote sensing and machine learning offer powerful tools for estimating SOC lev-
els, but they are accompanied by several potential limitations and constraints [17]. One
primary limitation is the spatial resolution, which may impede their ability to capture
fine-scale variations in SOC, particularly in regions with complex terrain or significant land
use changes. Additionally, the presence of cloud cover and atmospheric conditions can
adversely affect the quality and availability of remote sensing data. Clouds can obstruct
the view of the ground, while atmospheric conditions may introduce errors. Various data
preprocessing and correction steps, such as atmospheric correction and land cover clas-
sification, can add uncertainty and require specialised expertise. The ground validation
of SOC estimates poses a challenge, involving labor-intensive and costly soil sampling
and laboratory analysis. Furthermore, inconsistencies can exist between different remote
sensing sensors and data sources, and the cost of high-resolution remote sensing data
may be a limiting factor in certain applications. Importantly, the performance of machine
learning models hinges on the quality and quantity of training data, as well as the selection
of features and algorithms. Inappropriate models or training data can lead to inaccurate
estimates. Considering these challenges and limitations, it is imperative to complement
remote sensing with ground-based observations to enhance the accuracy and reliability of
SOC estimation.

3. Application of Mid-Infrared Spectroscopy in Predicting Soil Organic Carbon
3.1. Principle and Advantages of MIR in Soil Organic Carbon Prediction

MIR has shown high potential in the prediction of SOC due to its cost-effectiveness
and high and predictive accuracy ability. MIR is a spectroscopic method that involves the
use of mid-infrared light, typically in the range of 2.5–25 µm. The interaction of MIR light
with the molecules in the soil sample causes the molecules to vibrate at specific frequencies,
generating a unique spectral pattern or “fingerprint” [28,55]. While MIR remote sensing
has a longer wavelength compared to traditional optical remote sensing, it is important to
note that ground penetration capabilities depend on the wavelength and soil conditions.
Generally, the penetration depth is about half the wavelength. Therefore, while MIR can
provide some level of subsurface information, its penetration depth may not be as signif-
icant as that of longer wavelengths, such as those in the microwave range. This spectral
information is used to predict various soil properties, including SOC concentration [56],
and bulk density [57]; hence, the estimation of SOC stocks (SOC concentration × bulk
density × soil depth). There are numerous advantages of MIR to estimate concentrations
of SOC. Firstly, it is a rapid and non-destructive method [30], and requires minimal sample
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preparation [22,58]. Secondly, it is capable of providing continuous and real-time measure-
ments, which can be particularly useful in monitoring changes in SOC over time [57,59].
Consequently, MIR can analyse multiple soil properties simultaneously [58,60], making it a
versatile tool for soil analysis.

3.2. MIR and Machine Learning in Soil Organic Carbon Prediction

The spectral data derived from MIR is typically high-dimensional and complex. There-
fore, advanced statistical or machine learning models are required to extract meaningful
information from the spectral data and predict the SOC concentration [61]. Partial Least
Squares Regression (PLSR), Support Vector Machines (SVM), and Artificial Neural Net-
works (ANN) are commonly used for modelling the complex and non-linear relationships
between MIR spectra and SOC concentration [62]. The deep learning techniques such as
Convolutional Neural Networks (CNNs) have been applied to MIR data for SOC predic-
tion [60]. These methods have improved the prediction and precision of SOC compared to
that of traditional machine learning method [63]. This demonstrates the potential of apply-
ing MIR in combination with advanced machine learning techniques for SOC concentration
and stock prediction.

3.3. Integration of MIR, Remote Sensing, and Machine Learning

The combination of MIR, remote sensing and machine learning techniques provides
a comprehensive approach to SOC prediction and mapping. MIR can provide highly
accurate, local-scale SOC predictions [30], while remote sensing data can provide broader,
landscape-scale information [17]. Machine learning techniques, on the other hand, can
integrate these different types of data and handle their complex relationships to provide
more accurate and spatially comprehensive SOC predictions [54]. Overall, the approach
may facilitate a speedy, precise, and low-resource base approach.

To delve deeper into the integration of these methods, let us examine some successful
research examples. Forkuor et al. (2017) [64] conducted high-resolution SOC measurements
of soil samples using MIR. Subsequently, they employed satellite remote sensing data to ac-
quire information about land cover and vegetation indices in the corresponding regions [64].
Finally, they applied machine learning algorithms, such as Random Forest, to amalgamate
these datasets and generate high-resolution SOC maps. Similarly, Tziolas et al. (2020) [65]
adopted a comprehensive approach, combining ground-based MIR measurements with
satellite remote sensing data to predict SOC in different regions. They harnessed deep
learning techniques, including Convolutional Neural Networks (CNNs), to process remote
sensing imagery while leveraging the high accuracy of MIR for calibration and improved
model precision [17,66]. This integrated approach not only aids in precise SOC estimation
but can also be employed for decision support in sustainable land management [66]. For
instance, agricultural sectors can utilize these high-resolution SOC maps to guide land-use
planning, thereby enhancing crop productivity, reducing soil erosion, and promoting sus-
tainable agricultural practices. By delving into these case studies of integrated methods,
we gain a clearer understanding of how they combine MIR, remote sensing, and machine
learning to achieve SOC prediction and mapping, offering valuable insights and inspiration
for future research.

3.4. Limitation of MIR

MIR holds significant promise in predicting SOC due to its cost-effectiveness and
high predictive accuracy. However, along with its advantages, it is important to recognise
several potential limitations in its application [22,23]. MIR spectral data can be complex
and high-dimensional, necessitating advanced statistical or machine learning models for
accurate SOC prediction. The technique’s accuracy is highly dependent on sample quality
and microscale representation, and soil water content. MIR often involves near-distance soil
sample collection, limiting its application in remote or challenging-to-access areas. Lastly,
costs associated with instrument acquisition and sample analysis should not be overlooked.
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To address these limitations, the integration of remote sensing and machine learning tech-
niques, alongside ground validation, offers a comprehensive approach to SOC prediction
and mapping. This combined approach can yield precise and cost-effective results, making
it valuable for various applications in soil science and environmental management.

4. The Application of Integrating Remote Sensing, Machine Learning, and MIR
Techniques to the Precise Assessment of Soil Organic Carbon in Australia

In this section, we present an in-depth overview of a pivotal project aimed at optimis-
ing the measurement of SOC concentrations and estimation of SOC stocks in Australia.
The project is funded by the Commonwealth Department of Industry, Science, Energy and
Resources (Australia), and constitutes a collaborative effort involving multiple scientific
disciplines. Key partners in this endeavor include the University of Queensland, FarmLab,
AgriCircle, the University of Aberdeen, and Ziltek, (Figure 1).
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Figure 1. Project participating units and designated tasks.

The overarching objective of this groundbreaking initiative was to substantially reduce
the cost associated with SOC measurement while concurrently enhancing the accuracy and
efficiency of estimating SOC in Australian soils. To achieve this, the project deploys an inno-
vative fusion of remote sensing, machine learning, and MIR. By synergising remote sensing
with advanced machine learning algorithms, our project aims to refine the stratification of
carbon estimation zones, ultimately reducing the number of sampling points needed to gen-
erate high-resolution SOC maps. Moreover, the integration of MIR with the remote sensing
and machine learning methodology leads to a more cost-effective alternative to traditional
laboratory analysis, thereby further reducing the overall analysis expenditure including
reducing the efforts of scientific manpower. This approach empowers the stakeholders to
make more accurate predictions regarding SOC concentration and stock in soil.

In addition, we have conducted a comprehensive examination of the uncertainty
of SOC estimation in Australia, as depicted in Figure 2. This figure provides a striking
visual representation of the prevailing challenge, portraying an uncertainty map of SOC of
the country, with varying color intensities denoting uncertainty level. Notably, the map
uncovers alarmingly high uncertainty levels across Australia, particularly in the central and
western regions. Given this pressing international context and the critical need to address
these challenges, our research aims not only to attain the accuracy of SOC estimation
but also to significantly reduce associated costs and resources. In this global context, our
dedication to research efforts in SOC estimation and cost-effectiveness is significant.
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Precision sampling was used in this project. AgriCircle, one of the participating units
(Figure 3), has developed a novel methodology that utilises multi-dimensional statisti-
cal methods to process remote sensing data and recommends representative sampling
locations, which are then combined with the outputs of the machine learning models to
increase the predictive accuracy of SOC estimation. This method primarily utilises mul-
tispectral (MS) and synthetic aperture radar (SAR) images from the Copernicus mission,
predominantly collected during periods of sparse vegetation in agricultural fields, captur-
ing high-resolution satellite imagery containing soil-related data [67]. The central focus of
the research lies in predicting the spatial distribution of soil zoning and topsoil properties,
such as Soil Organic Matter (SOM), within the agricultural fields using a random forest al-
gorithm. To achieve this goal, a comprehensive survey was conducted on samples collected
from 120 different fields. Following model training, the prediction accuracy for SOM was
83%. This received strong support from a high level of agreement with observations made
by farmers [67]. This approach significantly reduces the number of required sampling
points compared to traditional methods while maintaining high prediction accuracies. The
optimisation and validation of this methodology will be conducted based on the results
obtained from extensive site identification and sampling activities across different regions
in Australia. Ziltek, another participating unit, specialises in MIR and has developed cus-
tom calibrations for SOC prediction (Figure 4). The current SOC model is built exclusively
on South Australian agricultural soils. All of these samples are surface measurements
(0–30 cm) and were analysed using the Walkey–Black method. This is significantly different
from the dry combustion method used in the current study. As such, we expect there to
be some systematic differences in the predictions. The calibrations have shown promising
precision levels in initial testing. However, further data collection and calibration are
necessary to test a broader range of soils and land uses, ensuring the applicability and
robustness of the MIR method under Australian conditions.

https://soilgrids.org/
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Furthermore, the project also includes activities related to scaling and commercialising
the measurement services developed. AgriCircle will collaborate with FarmLab and other
partners, such as Nestlé, to build an open platform that connects farmers with carbon
schemes. This platform will facilitate data collection, credit allocation, and engagement
of landholders in SOC monitoring. Throughout the project, the University of Queensland
and the University of Aberdeen provide expertise in project management, the validation of
methodologies and platforms, and the communication of project findings to the scientific
community. Overall, this project represents a significant effort to optimise SOC measure-
ment in Australia by leveraging the potential of remote sensing, machine learning, and MIR
(Figure 3). By reducing measurement costs, with less technical manpower and improving
prediction accuracy, and facilitating the integration of farmers into carbon schemes, the
project aims to enhance knowledge of Australian soils and improve their productivity.

In addition, the project will identify two SOC estimation areas per site at 430 locations
spanning Western Australia (WA), South Australia (SA), Tasmania (TAS), Victoria (VIC),
New South Wales (NSW), and Queensland (QLD). These sites will encompass major soil
types found in cropping and grazing regions. At each site, we will provide landholders
with the opportunity to assess SOC levels in two distinct areas characterised by different
land management practices or land uses. Figure 5 demonstrates the process of soil sample
collection during the course of the project. This approach allows us to examine the im-
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pact of varying management strategies on SOC and serves as an effective tool to engage
landholders and promote active SOC monitoring.
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5. Preliminary Results and Discussion

A total of 36 samples were collected from two distinct soil depth intervals (0–30 cm
and 30–60 cm) to capture a representative profile of the site’s SOC variability. The sampling
locations, as depicted in Figure 6, were chosen based on the precision sampling method by
AgriCircle to ensure comprehensive coverage of the geographical heterogeneity present at
the site. We have conducted a detailed analysis of soil samples from the Turretfield reseach
site (farm) using MIR. All samples were promptly scanned in situ using the RemScan
(a portable MIR spectrometer, Manufacturer is Ziltek, Adelaide, Australia), which offers
a spectral range for the MIR is 2 µm to 13 µm, and the resolution is 8 cm−1, providing
immediate spectral data indicative of SOC content. Subsequently, these samples were also
sent to an accredited laboratory for SOC analysis using the dry combustion method, which
is a standard procedure for SOC quantification due to its accuracy and reliability. This dual
approach allows for a robust comparison between rapid, field-based MIR readings and
conventional laboratory measurements.

In Figure 7, we present the comparison between Rem Scan-predicted SOC values and
laboratory-measured SOC values. The line of best fit is also overlaid on top and indicates a
good fit (R2 = 0.83). Table 1 shows SOC density varies with depth: higher (1.44–2.15 g/cm3)
at 0–30 cm with more variation, and lower (0.767–1.36 g/cm3) at 30–60 cm with less
variation. We want to clarify that the PLSR model used in our study is a pre-trained
model. However, we applied additional steps to optimize its performance, as outlined
below. The pre-trained model was constructed using an agronomy database, consisting
of approximately 246 training samples and 106 testing samples. The division of data into
training and testing sets was carried out using the Kennard Stone algorithm. Here, we need
to point out that the current preliminary results do not separate samples based on depths.
The current SOC model is built exclusively on South Australian agricultural soils. All of
these samples are surface measurements (0–30 cm) and were analysed using the Walkey–
Black method. This is significantly different from the dry combustion method used in the
current study. As such, we expect there to be some systematic differences in the predictions.
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With this in mind, the Supplementary Materials includes some additional information about
the Ziltek Walkey–Black SA SOC model currently used for SOC predictions (R2 = 0.91).
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Figure 6. The location of the MIR-scanned samples overlaid on the geographical map of the site. The
RemScan predicted SOC values are also reported for each measurement. Left (a): measurements for
the top layer (0–30 cm); right (b): measurements for bottom layer (30–60 cm). The yellow dots in the
figure represent the sampling points. The numbers represent the organic carbon content values for
each point. In addition, due to the small font size of the black values, we purposely enlarged them
using blue font.
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The dots show the measured values while the red line shows the line of best fit. R2 = 0.83; Mean Absolute
Error (MAE) = 0.45; Mean Squared Error (MSE) = 0.24; Root Mean Squared Error (RMSE) = 0.49.
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Table 1. SOC content statistics for the 36 samples.

Depth
(cm)

Min
(g/cm3)

Max
(g/cm3)

Q1
(g/cm3)

Q2
(g/cm3)

Q3
(g/cm3)

Std
(/)

0–30 1.44 2.15 1.70 1.83 1.92 0.196
30–60 0.767 1.36 0.835 0.998 1.14 0.187

To enhance the model’s predictive accuracy, we applied a linear baseline correction
to remove any underlying trends in the data. The training data was then subjected to a
leave-one-out cross-validation approach within the PLSR framework. This iterative process
helped us evaluate the model’s performance and select the optimal configuration that
minimizes the mean square error.

Regarding Figure 8, it illustrates the dominant SOC region employed by the PLSR
model for predicting SOC concentrations. This information is derived from the Variable
Importance in Projection (VIP) scores. The VIP scores represent the importance of each
variable (wavelength) in the model. Higher VIP scores indicate variables that significantly
contribute to the prediction, while lower scores are less influential. To optimise the perfor-
mance of our PLS regression model, we employed leave-one-out cross-validation, ensuring
that each data point contributed to validating the model’s accuracy. In Figure 8, we present
the Variable Importance in Projection (VIP) scores derived from the PLS model. This visual-
isation highlights the variables that play a crucial role in the model, thus providing insights
into the key drivers of SOC variability.
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6. Commercialization and Potential Application in Australia

The commercialization of SOC measurement technology based on an integrated
methodology approach holds substantial promise for Australian agriculture, particularly
in the context of carbon markets and sustainable farming. This promise stems from sev-
eral key factors. Firstly, precise SOC measurement is essential for participation in carbon
markets, allowing farmers to quantify and verify their carbon sequestration efforts, poten-
tially increasing their revenue through carbon credits or offsets. Secondly, integrated SOC
measurement aids in implementing sustainable farming practices by providing accurate
assessments of SOC concentration and stock and its spatial distribution. This informs deci-
sions on soil management, crop rotation, and organic matter turnover, resulting in more
sustainable and productive agriculture. Additionally, it helps farmers comply with envi-
ronmental regulations and demonstrates their commitment to environmental stewardship.
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Furthermore, the commercialization of this technology can drive research and development,
fostering innovations in remote sensing, machine learning, and data analytics.

These innovations benefit not only Australian agriculture but also global climate
change mitigation efforts. Finally, the integrated approach’s economic viability makes it
accessible to a wide range of farmers, promoting its adoption and supporting the transition
to sustainable and carbon-conscious agricultural practices. In essence, the commercializa-
tion of integrated SOC measurement technology aligns with carbon markets, enhances
sustainability, ensures compliance, fosters innovation, and offers cost-effective solutions,
benefiting both individual farmers and broader environmental and economic goals. By in-
tegrating remote sensing, machine learning, and MIR, the cost of SOC measurement can be
significantly reduced, making it more accessible to farmers and potentially revolutionizing
carbon trading markets.

6.1. Decreasing the Cost of Carbon Monitoring

The decreased cost of carbon monitoring and the systematic approach to measuring
SOC over time is essential for Australian farmers [68]. By optimizing AgriCircle’s precision
sampling techniques across a broad spectrum of soil types and land uses in Australia, and
coupling this with MIR, the cost of SOC measurement can be decreased significantly [67].
Precision sampling and MIR, once calibrated for a site, can also significantly reduce the
cost of sampling over time, thus enabling more frequent monitoring at a significantly
reduced cost.

6.2. Facilitating Entry to Carbon Markets

This technology also has the potential to decrease barriers for farmer entry into carbon
markets and increase economic opportunities by building confidence among farmers with
science-based technological information [69]. With further validation and testing to reach a
high Technology Readiness Level (TRL), the plan is to run trials with carbon developers
and large food and beverage corporations like Nestlé Australia. Similar projects in Europe
are in advanced stages, with Nestlé compensating farmers for carbon sequestered in their
soils [70]. There is a clear opportunity to adapt this platform to the Australian emissions
trading system, utilising cost-effective soil sampling solutions to help farmers obtain credits
while assisting companies in meeting their sustainability targets.

6.3. Increasing Farmer Engagement

SOC measurement technology can also drive farmer engagement and interest in SOC
measurement with less effort and technological requirements, leading to generating high
confidence. As part of the project, farmers will be encouraged to test soils from contrasting
management and land uses on their farms, exploring the impact on SOC stocks [71]. This
would engage their interest in SOC measurement, driving demand for tools to monitor
soil health and participate in carbon farming initiatives [72] leading to strengthening their
economic capabilities.

6.4. Economic Stimulation of Regional Communities

Regional communities across Australia stand to benefit economically from the soil
sampling needed for this project. Contracting regional companies for soil sampling creates
employment opportunities, thus stimulating regional economies. It will also facilitate
as a demonstration plot, thus leading to an increase in the opportunities for technical
training for farmers besides increasing their knowledge and ability to protect the storage of
SOC [73]. In addition, by measuring SOC stock in diverse climatic regions, soil types, and
land uses, this project will contribute valuable data to national soil databases, aligning with
the National Soils Strategy and providing long-term public benefits [74].
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6.5. Formation of Collaborative Partnerships

The project fosters collaborative partnerships between research organizations, agricul-
tural solutions companies, industry suppliers of carbon measurement services, companies
seeking to purchase carbon credits, and farmers. This broad collaboration will ensure the
development of scientifically rigorous, innovative, and practical measurement solutions
that are well-designed and will have high acceptance by their intended end users. It of-
fers a cost-effective solution for carbon monitoring, facilitating entry to carbon markets,
fostering sustainable farming, stimulating regional economies, and encouraging collabora-
tive efforts in the agricultural sector. Precisely, the commercial application of integrated
technologies-based SOC measurement has significant potential in Australia.

7. Conclusions and Outlook

The integration of remote sensing, machine learning, and MIR represents a promis-
ing approach to measuring SOC concentration and estimate SOC stock with improved
precision and reduced costs. This triad of advanced technologies offers cost-effective,
speedy, and scalable solutions, addressing the need for accurate SOC measurement tech-
niques as we strive towards sustainable agricultural practices. In Australia, the potential of
these technologies has already been demonstrated preliminarily, with optimized precision
sampling techniques and the utilization of MIR showing significant reductions in SOC
measurement costs for farmers. Moreover, these technologies enable more frequent and
precise monitoring of SOC, allowing farmers to effectively track changes in soil health
over time. This integration not only enhances our understanding of SOC dynamics but
also promotes sustainable land management practices, contributing to both environmental
stewardship and agricultural productivity. However, in this paper, we present an analysis
of 36 sample datasets, which should be considered preliminary. As more data become
available, we intend to update our findings accordingly. At this stage, the limited sample
size precludes the development of distinct models for varying depths and does not yet
support a detailed per-farm analysis.

Preliminary analysis of the data and the proposal of the project show that the com-
mercialisation of SOC measurement technologies can lower barriers for farmers to enter
carbon markets and create new economic opportunities through building confidence, being
a technology-based measurement technique. Initial collaborations with carbon develop-
ers and large corporations have shown a strong interest in these technologies, indicating
promising prospects for their application within Australia’s emissions trading system. The
regional economic stimulation resulting from employment opportunities and the incorpo-
ration of valuable data into national soils databases further highlights the wide-ranging
benefits of these technologies. By fostering collaborations among research organisations,
agricultural solutions companies, farmers, and carbon credit purchasers, innovative and
practical SOC measurement solutions can be developed. Ultimately, the integration of
remote sensing, machine learning, and MIR holds great potential to revolutionise SOC
measurement, drive sustainable farming practices, enhance economic opportunities, and
contribute to the global fight against climate change.
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