Application of Soil Amendments for Reducing PFAS Exposure and Bioavailability

Albert L. Juhasza and Richard Stewartb

aFuture Industries Institute, University of South Australia, Australia
bZiltek Pty Ltd, Adelaide, Australia
PFAS Exposure and Remediation

- High electronegativity
- High bond strength
- Limits oxidation of per-fluoro compounds
- Poly-fluoro compounds (+ precursors) may undergo transformation

![Graph showing PFAS amendment application and costs]
PFAS Exposure and Remediation

Aim: Assess the impact of soil amendments on:

1. PFAS leachability
2. PFAS bioavailability

RemBind™ technology, jointly owned by the CSIRO and Ziltek Pty Ltd, has been fully commercialised by Ziltek Pty Ltd (US Patent 8,940,958 B2)

RemBind™: Composite product comprising amorphous aluminium hydroxide, kaolin clay and activated carbon
PFAS Exposure and Remediation – Research Approach

Bench scale immobilisation studies
- RemBind™ formulations
- Application rates

PFAS mobility
- ASLP-DI
- Effect of pH
- MEP

PFAS bioavailability
- In vivo mouse model
- Fate of pure compounds
- Assessment of RBA
PFOS and PFHxS Leachability – Pre- and Post-Amendment

PFOS Leachability in soil Z2

PFHxS Leachability in soil Z2

PFAS (µg l⁻¹; ASLP-DI)

RemBind100
RemBind200
RemBind300

PFOS+PFHxS Interim landfill acceptance criteria (double composite lined (7 µg l⁻¹))

Amendment application (% w/w)
PFAS Bioavailability – Research Approach

- C57BL/6 mice – well established breed
- 10 day exposure study (9 + 1)
- For each treatment – 4 operational units, each comprising 3 mice
- PFAS (0.01-1.0 µg kg\(^{-1}\)), contaminated soil (1% w/w) or amended soil (up to 10% w/w) added to AIN93G chow
- PFAS-AIN93G chow supplied *ad libitum*
- Health, consumption, excretion data monitored daily
- Following exposure, PFAS concentration in tissue / excreta is determined
- Determine dose-response and bioavailability endpoints
- Determine PFAS relative bioavailability in soil using pure compounds as the reference
Assessment of *In Vivo* PFAS Distribution

PFHxS
- Liver
- Kidney
- GI
- Faeces
- Urine
- Carcass

PFOS
- Liver
- Kidney
- GI
- Faeces
- Urine
- Carcass

PFBS
- Liver
- Kidney
- GI
- Faeces
- Urine
- Carcass

Urineary excretion (µg)
- PFCA C-chain length

Liver accumulation (µg)
- PFCA C-chain length
Assessment of PFAS Bioavailability

- Short-chain PFAS were excreted in the urine; PFCA were excreted to a greater extent than PFSA.
- Urinary excretion decreased with increasing perfluoralkyl chain length.
- PFAS accumulated in the liver; increasing accumulation with increasing carbon chain length was observed for PFCA up to a cut off of C11.
- Linear dose-responses were observed; urinary excretion (PFBS, C4-C6 PFCA), accumulation in organs and / or carcass.
Assessment of PFAS Relative Bioavailability

- PFAS (mg kg⁻¹):
 - PFOA
 - PFHxS
 - PFHpS
 - PFOS
 - 8:2 FTS

- Soil Relative Bioavailability (%):
 - Unamended soil
 - Amended soil
Conclusions

❖ Amendment of PFAS-contaminated soil with Rembind™ (at 5% w/w) reduced PFAS leachability by > 99%
❖ Dose-response studies highlighted differences in PFAS fate in vivo → this has implications for bioavailability endpoint monitoring.
❖ PFAS RBA in contaminated soil was reduced by > 75% when soil was amended with 5% w/w Rembind™.
❖ Future research includes the development of new Rembind™ formulations that can further reduce PFAS RBA.

Acknowledgements